

Performance certification – a **necessity** in today's plate heat exchanger market

How AHRI performance certification of plate heat exchangers protects you and your clients.

Agenda

- Parameters that effect the sizing of a plate heat exchanger
 - Approach temperature
 - Pressure drop
- Evaluation of heat transfer area (m²)
 - Pressing depth / Channel gap
- Performance certification
 - Air Conditioning Heating and Refrigeration Institute (AHRI)
 - Energy savings
 - Protection and security
 - Why? What? How...?

The competitive market for plate heat exchangers

Which parameters have the biggest influence in sizing of a plate heat exchanger?

Heat transfer equations

 $Q_{hot} = m \cdot c \cdot \Delta T_{hot}$

$$Q_{cold} = \mathbf{m} \cdot \mathbf{c} \cdot \Delta T_{cold}$$
$$Q = \mathbf{k} \cdot \mathbf{A} \cdot \mathbf{LMTD}$$

- 1. LMTD (approach temperature)
- 2. Pressure drop

Effect of approach temperature LMTD

© Alfa Laval

www.alfalaval.com

Specification: 1,000 kW $35^{\circ}C \rightarrow 30^{\circ}C$ 50 kPa $34^{\circ}C \leftarrow 29^{\circ}C$ 50 kPa

LMTD steps of 0.1°C

 Specification: 1,000 kW

 35°C → 30°C
 50 kPa

 34°C ← 29°C
 50 kPa

Effect of pressure drop

F

Specification: 1,000 kW $35^{\circ}C \rightarrow 30^{\circ}C \quad 50 \text{ kPa}$ $34^{\circ}C \leftarrow 29^{\circ}C \quad 50 \text{ kPa}$

1,000 kW 35°C → 30°C 100 kPa 33°C ← 28°C 100 kPa

> 2°C LMTD 1,000 kW – 100 m²

33°C ← 28°C 50 kPa

1.5°C LMTD 1,000 kW – 150 m²

1,000 kW 35°C → 30°C 30 kPa $33^{\circ}C \leftarrow 28^{\circ}C$ 30 kPa

> 1°C LMTD 1,000 kW – 200 m²

www.alfalaval.com

© Alfa Laval

Effect of peak pressure drop on plate heat exchanger sizing

Duty kWatt	Temperature profile °C	Media & Flowrate m³/hr	LMTD °C	Maximum dP at peak flow kPa	Alfa Laval PHE model	Number of plates	Transfer area m²	Price EUR
1,000	$\begin{array}{l} 35^\circ C \rightarrow 30^\circ C \\ 33^\circ C \leftarrow 28^\circ C \end{array}$	Water 173 m ³ /hr Water 173 m ³ /hr	2.0	50	M15-B FG	163	101.1	€ 30,791

Can we compare heat transfer area like for like?

Is a $m^2 = m^2$?

© Alfa Laval

Plate – pressing depth

- Alfa Laval has a range of pressing depths from 1.9 mm up to 4.0 mm for optimal solution to any duty.
- There is no good or bad pressing depth just different ones to fit various duties be it difficult or easy m² = m² ?

You can never be sure...

Or you can always be sure!

APPR CERTIFIED®

Liquid to Liquid Heat Exchangers AHRI Standard 400

www.alfalaval.com

© Alfa Laval

Small change, big impact 4MW ETS

© Alfa Laval

Small change, big impact 4MW ETS

© Alfa Laval

District Cooling

One example where certification pays off

The operational cost in a district cooling system is to a large extent determined by the heat exchangers.

Small change, big impact

- The temperature set point, 7°C is not met. Valve opens and flow increases. (from 489 to 579 m³/h)
- 2. Pump power consumption increases. (from 43 to 71 kW) +28 kW
- 3. Return temperature decreases. (from 13°C to 11.9°C)
- 4. Evaporation temperature decreases. (from 4°C to 3.5°C)
- 5. Compressor power increases. (from 1,259 kW to 1,283 kW) +24 kW

Under-surfaced PHE in a district cooling energy transfer station.

No buts, correctly dimensioned heat exchangers pay for themselves fast

www.alfalaval.com

© Alfa Laval

No buts, correctly dimensioned heat exchangers pay for themselves fast

www.alfalaval.com

© Alfa Laval

AHRI protects you and your clients

- Non-profit trade organization
- Develops and publishes technical standards for industry products
- Establishes procedures for measuring and certifying performance
- Saves energy, improves productivity and ensures better environment

You want the AHRI certification programs – and nothing else

- Independent third-party verification of thermal performance of plate heat exchangers in the 'AHRI Liquid to Liquid Heat Exchangers (LLHE) certification program'
- Brazed/fusion-bonded plate heat exchangers in 'Liquid to Liquid Brazed & Fusion bonded Plate Heat Exchangers (LLBF)'
- Lab testing principles in the AHRI 400 rating standard

Supplier verification

LLHE Specification Sheet Verifications

Complete **this form** for each LLHE specification sheet verification request and send to **AHRI Verification**. A copy of the output sheet from the manufacturer's Selection Rating Software must be submitted in conjunction with this form. All fields must be completed prior to submission. AHRI does not verify the mechanical attributes of a specification sheet: only the thermal performance is verified. Thermal performance includes Inlet Temperatures, Outlet Temperatures, Flow Rates, Pressure Drops, Heat Load, Heat Transfer Area, Density, Specific Heat Capacity, Thermal Conductivity, Viscosity, Heat Transfer Coefficient, L.M.T.D., and Channel Arrangements.

Please allow ten (10) calendar days for AHRI to conduct verification and respond to your request.

- Select all]
- 1. A LINE PLATE AND FRAME HEAT EXCHANGER
 - ALFA LAVAL
- 3. APV

2

- 4. BELL & GOSSETT
- DANFOSS
- 6. DANFOSS A/S
- GRUNDFOS USA
- HEAT TRANSFER
- 9. HISAKA
- 10. IES
- 11. KELVION ECOFLEX
- 12. PLATE CONCEPTS
- 13. POLARIS
- 14. SIGMA
- 15. SIGMARI
- 16. SONDEX
- 17. STANDARD XCHANGE
- 18. SUPERCHANGER
- 19. WESPLATE

Model · AQAL Bern Data 2012-04-25				
Field Dentity Spectra Pelek separaty Thermal canduchity Viscolary wilet Viscolary offet	kgimi KJ(tg*K) M(tr*K) dP dP	Hot skle 7Later 900.7 4.26 0.589 1.17 1.26	Cold	xide .ater 1000 4.200 0.5855 1.47 1.24
Volume Row rate Intel temperature Out et temperature Preteure drop Pouling resistance [®] 10008 Deb Morgin	SOC A COS	297 140 80 681	0.13 C.00	396 80 120 685
Heat auchanged Heat bander a sa	81/0 107*		1000 95.5	
Ratative directions of flucts Teamber of pisters Chamber of passes Namber of passes Extension capacity		1796L 1	Courtercurset 143	1786L 1
Plata material / thickness		ALLOY 90	4/0.40 mm	
Convector standard		41		4"
Design processes Design Vergebetzek Over all vergilt x width x height Networght, empty / opprating	tar 1C met	10.5 65.8	1445×480×182 991/1160	10.5 65.6 2
Nomine A-Cenension	-		467.1	
Performance is ARE400-2001 Certs	fed.			

AHRI performance certification is better for everyone

End customers

Consultants

Contractors

Suppliers

© Alfa Laval

Buying a plate heat exchanger?

Heat Transfer Area comparison

Plate heat exchanger design critera	37°C Δ2 { 35°C 31°C } Δ2 29°C		40°C Δ5 35°C 35°C 34°C 34°C 34°C 28°C
Pressing depth (mm)	1.9	2.5	4.0
Channel gap (mm)	3.8	5.0	8.0
Height / width	>2.5	<= 2.5	<2.0
LMTD (°C)	<2.0°C	2.0 – 2.5°C	>5.0°C
NTU (∆T/LMTD)	6/2 = 2		6/5 = 1.2
Applications	Data centre, HVAC cooling, district cooling, heat recovery, pressure breakers	HVAC heating, district heating, sea water, cooling tower interchanger, heat recovery	Steam, oil cooling, tap water heating, swimming pool

How to specify?

One sentence: "The plate heat exchangers shall be AHRI certified in accordance with the AHRI Liquid to Liquid Heat Exchangers Certification Program"

APR CERTIFIED®

Liquid to Liquid Heat Exchangers AHRI Standard 400

Let's create a sound plate heat exchanger market

Specifying AHRI performance certification

- Eliminates cheating with thermal performance
- Stimulates manufacturers to develop more efficient products
- Creates a fair basis for comparisons between suppliers
- Saves natural resources as fuel, gas and electricity
- Our social responsibility

AlfaQ[™] series models

Gasketed plate heat exchangers

Model	AQ1	AQ1L	AQ2	AQ2L	AQ2S	AQ4	AQ4L	AQ6
Nominal flow rate m ³ /h/GPM	14/80	14/80	58/250	58/250	58/250	180/980	180/980	430/1850
Nominal design temperature °C/°F	180/300	180/300	180/300	180/300	180/300	180/300	180/300	180/300
Nominal design pressure bar/psi	16/150	16/150	25/300	25/300	25/300	25/300	25/400	30/400

					10 per	25	20
Model	AQ6L	AQ8	AQ8S	AQ10	AQ14	AQ14L	AQ20
Nominal flow rate m ³ /h/GPM	430/1850	800/3600	700/3100	900/6000	1800/7900	2000/8000	3600/15500
Nominal design temperature °C/°F	180/300	180/300	180/300	180/300	180/300	180/300	180/300
Nominal design pressure bar/psi	30/460	30/400	30/400	30/400	25/300	30/400	25/300

© Alfa Laval

Alfa Laval's corporate mission

To optimize the performance of our customers' processes. Time and time again.

© Alfa Laval

Demand new Standards

New generation plate heat exchangers

The CurveFlow[™] area Improves media flow and minimizes risk of fouling.

The ClipGrip[™] gasket design Ensures perfect seal and trouble-free maintenance.

The Five-point alignment system Secures reliable performance with easy serviceability thanks to perfect positioning.

The OmegaPort[™] noncircular inlet and outlet Enhances media flow and thermal efficiency.

Offset gasket grooves Ensures plate utilization for maximum heat transfer efficiency.

The T-bar roller design Provides a lower unit that is easy to service.

Website: Demand new Standards

